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Abstract - This paper presents a design for parallel processing 
of synthetic aperture radar (SAR) data using multiple Graphics 
Processing Units (GPUs). Our approach supports real-time 
reconstruction of a two-dimensional image from a matrix of echo 
pulses and their response values. Key to runtime efficiency is a 
partitioning scheme that divides the output image into tiles and 
the input matrix into a collection of pulses associated with each 
tile. Each image tile and its associated pulse set are distributed to 
thread blocks across multiple GPUs, which support parallel 
computation with near-optimal I/O cost. The partial results are 
subsequently combined by a host CPU.  Further efficiency is 
realized by the GPU’s low-latency thread scheduling, which 
masks memory access latencies. Performance analysis quantifies 
runtime as a function of input/output parameters and number of 
GPUs. Experimental results were generated with 10 nVidia Tesla 
C2050 GPUs having maximum throughput of 972 Gflop/s. Our 
approach scales well for output (reconstructed) image sizes from 
2,048 x 2,048 pixels to 8,192 x 8,192 pixels. 

 

Index Terms—High performance computing, Synthetic 
aperture radar, Image reconstruction, Graphics processing unit 

I.  INTRODUCTION 
The use of radio-frequency electromagnetic radiation for 

object detection in a synthetic aperture radar (SAR) 
configuration comprises a key technique for surveillance 
imaging [1,2].  In practice, an electromagnetic pulse from an 
emitter location pP is reflected by a target, and the reflected 
pulse components are sensed at a receiver location pR and 
quantized temporally into NB bins.  Given NP pulses, where 
each pulse is taken at different sensor configurations of form 
(pP, pR), an NP x NB element pulse data matrix P is obtained.  

Computational transformation of P into an NxN-pixel 
image b that depicts targets within the sensor’s field-of-view 
(FOV) requires superposition of pulse effects, implying an 
additive process where each pulse and its range bins in P 
potentially influences each pixel in b. The globality of this 
approach, which uses multiple pulses from different emitter 
locations, helps resolve ambiguities resulting from the fact that 
a pulse at given time delay references multiple points in the 
target plane that are equidistant from the emitter [3].  
Advantageously, since the SAR reconstruction concept is 
similar in structure (but not identical mathematically) to a 
tensor product, one can adapt various distributed processing 

strategies developed for the tensor product [4] to implement 
SAR image reconstruction on a cluster of GPUs. 

In this paper, we present techniques for parallelizing SAR 
image reconstruction algorithms to run efficiently on a CPU-
controlled cluster of multiple graphics processing units 
(GPUs). Our technique is illustrated in terms of a single-stage 
backprojection algorithm whose computer code and data are 
available publicly [5,6]. Performance of our approach varies 
quasilinearly with NPR, and does not appreciably compromise 
the numerical accuracy of the reconstructed image b with 
respect to a reference image a. Our technique employs 
algorithm-to-architecture mapping methods that feature a mix 
of distributed- and shared-memory models that reflect key 
GPU organizational constraints. 

This paper is organized as follows.  Section II provides 
theoretical and practical background. Section III presents the 
parallelized computer codes that comprise our approach.  
Timing and error measurements and analysis are given in 
Section IV, with conclusions and suggestions for future work 
given in Section V.    

II. THEORETICAL AND PRACTICAL BACKGROUND 
We begin with a discussion of the single-stage SAR 

backprojection algorithm (Section II.A) and then discuss 
previous work in parallelizing backprojection algorithms 
(Section II.B).  An overview of the CPU and GPU 
architectures employed (Section II.C) provides practical 
background for the subsequent discussion of algorithm-to-
architecture mapping in Section III. 

A. Single-Stage SAR Backprojection Algorithm 
Several published algorithms for SAR reconstruction from 

sensed radar pulse data have been optimized for sequential 
systems with relatively low throughput [2]. Here, algorithm 
design seems to be influenced by computational performance, 
rather than quality of the reconstructed image. In contrast, a 
naïve implementation of the single-stage backprojection 
algorithm (BP1) [5], is computationally costly but yields high 
numerical quality in the reconstructed image.  

In practice, BP1 examines the pairing of every received 
(postprocessed) pulse with every reconstructed pixel to 
estimate object reflectivity at each point in the spatial 
representation. BP1 inputs pulse response matrix P, an NP x NB 
element matrix of NP pulses and NB response bins obtained by 
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temporally quantizing the received reflections of each radar 
pulse (Section I).  For a given pulse, responses sensed later in 
time are physically further from emitter location pP, thusly are 
placed into higher-numbered range bins. For each pixel in the 
output image, every pulse and range bin in that pulse is 
considered separately.  The value in a given range bin is added 
to the value of the associated pixel of the reconstructed SAR 
image. Brighter areas in the reconstructed image are 
associated with greater target reflectivity.  

Implementationally, we observe that for matrices A and B, 
the tensor product C = A ⊗ B pairs each element aij of A with a 
sub-matrix b in B to form the partial product cij = aij * b, where 
(*) denotes pointwise multiplication. In practice, a host 
processor marshals products cij to form the matrix C.   

We exploit this tensor product structure for SAR image 
reconstruction (albeit with different mathematical details) by 
associating each pulse and bin in P with each pixel of b. In 
particular, let P[i].bin[j] denote the jth range bin of pulse i after 
phase correction, and let (P[i].x, P[i].y, P[i].z) denote the 
source of pulse i with respect to a prespecified origin. If each 
pulse has range [Rstart, Rend], then the intensity of output image 
b corresponding to physical location (x,y) can be written as:  

b(x,y)

     

(1)

 
Note that this model captures the data movement patterns 

of BP1, although our implementation includes several 
enhancements that improve output quality. For instance, in 
Equation (1), it was assumed that b(x,y) maps to a range bin 
indexed by an integer. In practice, reconstructed pixels are 
associated with temporal intervals that can overlap range bins, 
and can be thought of as mapping to bins that have a fractional 
index. In such cases, an interpolated (smoother) image can be 
generated by examining range bins adjacent to a fractionally-
indexed bin, then computing their weighted average based on 
their distance from this bin. However, such enhancements are 
not the focus of this paper; we view any implementation of the 
backprojection algorithm with a data access pattern as shown 
in Equation 1 as being logically equivalent.  For additional 
details, the reader is referred to [2]. 

B. Related Work 
The approach presented herein implements fast parallel 

processing of SAR data as well as reconstruction of a two-
dimensional SAR image. Additionally, our techniques could 
be applied to a domain where sensor response data is projected 
back to form an image of a surface or object. For example, 
computer-aided tomography, featuring the construction of a 3-
D model from a set of 2-D cross-sectional views, as in medical 
imaging for obtaining a three dimensional view of tissue in 
vivo. Here, each volumetric unit or voxel has properties similar 
to a reconstructed SAR pixel, and the tensor-product-like 
structure holds. Namely, each voxel in each cross-sectional 
view is associated with a response value that is spatially near 
the response of its neighboring voxel. Similarly, a given 
volume of output data will require a predictable quantity of 

sensor response data in each cross section. The preservation of 
these properties ensures that our partitioning scheme provides 
efficient data access mechanisms for generating tomograms 
[7,8].  

Other potential applications differ from the preceding 
applications involving image sampling. For example, network 
tomography infers network characteristics from observations 
taken at known locations. In this case, each node in the 
network core is analogous to a pixel in the SAR output image, 
and each network location is conceptually similar to a radar 
pulse. Observe that the latency or reliability of a channel can 
be inferred from the repeated transfer of packets between 
locations. The projection of this data back onto the nodes 
through which packets have travelled can produce a visual 
representation of the network at any time, without requiring 
explicit assistance from core nodes. In this paradigm, spatial 
locality follows from the route optimization properties of 
routing protocols [3,9].  

A similar problem involves estimation of ocean 
temperatures from acoustic wave propagation latencies, as the 
speed of sound in water varies inversely with water 
temperature. By measuring acoustic wave propagation times 
between multiple emitters and receivers, a set of cross 
sectional images can be constructed analogous to cross 
sections in computer-aided tomography. Small three 
dimensional units of water, not unlike the voxels of computer 
aided tomography, become the unit onto which acoustic sensor 
response data is projected. Spatial locality of input data 
follows from the output partitioning scheme [10].  

C. Graphics Processing Unit (GPU) 
GPU devices primarily support fast, photorealistic image 

rendering for video gaming applications.  GPUs have recently 
been applied to supercomputing, due to fast SIMD processing 
and the ability of some GPUs to compute double-precision 
floating point arithmetic [11]. Additionally, GPUs have a huge 
installed base that amortizes significant research and 
development expenditures, thereby achieving relatively low 
unit cost (<100 USD) with frequent upgrades.   

Unfortunately, GPUs feature a hierarchical memory 
structure that is understandably designed for fast graphics 
operations, but does not necessarily support all scientific 
computations. This particularly holds for image and signal 
processing with large operands, and for grid- and mesh-based 
simulation using huge model domains. Typical GPU multi-
level memory structure combines a shared memory model 
(DRAM or global memory and L2 cache or shared memory in 
Fig. 1) in the context of groupings of cores (processing 
elements) called multiprocessors or streaming multiprocessors 
having local memory (L1 cache in Fig. 1). As a result of the 
varying latencies between DRAM, L2 and L1, as well as small 
local memories, data movement across a GPU is fraught with 
challenges that feature memory access latencies which can be 
quite large for apparently simple operations. 

As a result, the porting of legacy code to GPUs has 
emphasized manual optimization, although recent reports 
indicate some automation is possible [12]. In practice, 
application-to-architecture mapping can be supported by an 



underlying code-oriented architecture.  For example, the 
Nvidia Tesla C2050 GPU used in this study has 14 streaming 
multiprocessors (SMs), each containing 32 processing 
elements or cores – totaling 448 cores per device. To 
coordinate many cores, GPUs arrange threads into thread 
blocks. In particular, each thread block embodies the execution 
of a single code fragment (or kernel) across multiple parallel 
threads that execute on a single SM. So, at least 14 thread 
blocks are needed to engage all 14 SMs in a C2050 GPU and 
each thread block must comprise at least 32 threads to engage 
the 32 cores in an SM. In practice, to effectively hide memory 
latency, may more thread blocks and many more threads per 
block are often needed. 

 
Fig. 1.  High-level view of Nvidia Tesla C2050 GPU architecture. 

During program design, a programmer specifies the parts 
of an application that are suited for threaded (parallel) 
execution, by labeling them as kernels using syntax specified 
by the GPU programming language (e.g., CUDA for an 
Nvidia Tesla processor). At runtime, the threads of a thread 
block can access a common shared memory, thereby 
supporting a form of inter-thread communication. A much 
slower global memory, accessible from all thread blocks, helps 
transfer data to and from the host as well as to and from the 
shared memory of the SMs [11]. This global memory also 
facilitates inter-block and inter-SM communication. As in 
other hierarchically-configured memory systems, high 
performance implies emphasizing local (intra-SM) memory 
operations, with minimal data transfer to and from slower 
memory devices.  

GPUs can operate efficiently with thousands of threads 
running simultaneously, as thread scheduling is implemented 
directly in hardware with negligible overhead compared to 
program execution time. Support for many threads allows 
masking of memory access latencies: other threads can operate 
while paused threads wait for I/O operations to complete.  

The BP1 algorithm is an ideal candidate for GPU 
implementation, since (a) each output pixel can be viewed as 
the sum of the contribution of all input pulses, and (b) the set 
of operations used to calculate this contribution is not 

dependent on the value of the input.  However, some clever 
data partitioning is required to realize efficiency. Efficient 
single GPU implementations of BP1 were described by us in 
[3,13]. 

III. MULTI GPU ALGORITHM DESIGN AND IMPLEMENTATION 
The SAR backprojection algorithm (BP1) was 

implemented via partitioning of the pulse matrix P and 
reconstructed image b, as discussed in Section III.A.  Code 
structure is discussed in Section III.B. 

A. Algorithm-to-Architecture Mapping Technique 
In order to restrict the pulse data in P to fit in GPU local 

memory, but not to be so small to cause excessive latency due 
to repetitive memory accesses, we employed a projection 
function f that relates the sensing geometry for a given 
response P(i,j), specific to the ith pulse and jth range bin, to the 
corresponding pixel coordinate(s) in b [3]. Let P have NP x NB 
domain Y, and let b have Nx x Ny domain X.  The forward 
projection function  f : Y → 2X  forms a basis for derivation of 
a reverse projection function g : 2X → 2Y.  The function g is 
useful for our BP1mg multi GPU implementation, because it 
accepts the coordinates of a reconstruction neighborhood (also 
called a tile) denoted by T ⊂ X, and produces the 
neighborhood N(Y) which denotes the coordinates of pulses 
corresponding to the restriction b|T. Due to sensing geometry 
at typical altitudes, we have |N(Y)| << |p1(Y)|, where |S| 
denotes cardinality of set S, and pk denotes projection to the kth 

coordinate. 
In particular, in this study we specified a KxK-pixel tile T 

to which we applied g, thereby supporting the following 
restriction of the pulse matrix: 

 P′ = P |g(T)  (2) 

which was then assigned to a thread block for processing by a 
streaming multiprocessor to yield b|T. This partial result was 
sent to the CPU for accumulation into reconstructed image b. 

 
Fig. 2.  Tile- and thread-block-based mapping technique for multi-GPU 

computation of algorithm BP1mg shown in Figure 6 (from [3]). 

Given this approach (see Fig. 2), efficiency is realized by 
(a) minimizing | P′ | without compromising reconstruction 
accuracy, (b) balancing K, Nx, and Ny to minimize I/O and 
memory latencies associated with the tiling of b, and (c) 
designing an efficient reverse projection g which can be done 
with (i) table lookup or (ii) explicit coordinate computations.  
The Nvidia Tesla C2050 GPU that was employed in this 
study, being optimized for graphics, is well suited to either i) 
or ii).  In this paper, due to space limitations, we focus on 



techniques a) and b).  The reader is referred to [3,13] for a 
discussion of the technique in method c). 

B. Code Examples 
Parallelization of BP1, which was specified in MatlabTM , 

as overviewed in Fig. 3), was first expressed in C as outlined 
in Fig. 4, then in the CUDA language, as outlined at a high 
level in Fig. 5 (single-GPU version) and Fig. 6 (multi-GPU 
cluster version).       

 
Fig. 3.  Outline of Matlab code for BP1 backprojection algorithm. 

 
Fig. 4.  Outline of C code for BP1 parallel backprojection algorithm. Note 

the use of the MPI  #pragma parallel construct for the distributed 
memory model illustrated in Fig. 1. 

Given the code for BP1mg outlined in Fig. 6, which uses 
the mapping approach portrayed notionally in Fig. 2, we 
measured kernel runtime and numerical error associated with 
the serial and parallel BP1 codes, for a multicore CPU 
controlling up to 10 Nvidia Tesla C2050 GPUs, as follows. 

 
Fig. 5.  Outline of single GPU code for BP1sg backprojection algorithm. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
The multi-GPU version of backprojection algorithm BP1, 

hereafter called BP1mg, was compiled with the C/MPI 
compiler gcc version 4.1.2 Revision 20080704 (Red Hat 4.1.2-
52) and the CUDA compiler Release 4.0, V0.2.1221, on five 
remote nodes of the Condor architecture [14], where each 
remote node has two Nvidia C2050 GPUs (see Fig. 2). One 
thread was used on each of six CPUs: one on the localhost 
(which had no GPU) and five on the remote nodes. The 
localhost and each remote node had an Intel Xeon 6-core CPU 
X5650 running at 2.67GHz with hyperthreading.  The GPU 
code, BP1mg, is structured as shown in Fig. 6. 
 

 
Fig. 6.  Outline of multi-GPU code BP1mg for backprojection algorithm. 

A hand-optimized version of BP1mg was tested using the 
Tesla C2050’s double precision floating point arithmetic.  The 
input data (pulse data, antenna locations, etc.) as well as the 
reconstructed image are single precision floating point; all 
operations in the reconstruction kernel are performed in 
double precision. Pulses before (respectively, after) the 
Inverse Fast Fourier Transform (IFFT) are 5,592 pulses (resp. 
16,384 pulses). 

A. Runtime Measurement and Analysis 
Timing data for BP1sg and BP1mg are presented in Tables 

I (total runtime) and II (kernel runtime), with the same 
parameters as for the reference single-GPU algorithm BP1sg 
similar to that described in [3]. Total execution time (sec, 
including I/O, message passing, memory allocation and  

TABLE I.  TOTAL RUNTIME IN SECONDS FOR SINGLE- AND MULTI-GPU 
VERSIONS OF THE BP1 BACKPROJECTION ALGORITHM. 

Runtime Algorithm Version  
Nx x Ny BP1sg BP1mg/max Speedup 

2048x2048 15.357 2.494 6.158 x 
4096x4096 48.080 6.468 7.434 x 
8192x8192 178.806 22.039 8.113 x 

 
 

L.1          // Read all pulse data into host CPU memory 
L.2          // Write all pulse data onto GPU device memory 
L.3          // Perform Inverse FFT for all Pulse data on the GPU 
L.4          // Perform FFT Shift for all Pulse data on the GPU 
L.5          Call kernel to perform reconstruction 
L.6              for each pulse in the Npulses dataset 
L.7                   // Perform reconstruction of four pixels per  
 CUDA thread 
L.8              end 
L.9           end of kernel 
L.10         // Read reconstructed image from GPU device 
L.11         // Write image to file 

      
 

L.1    // Master thread sends arguments to slave threads (STs) 
L.2    // Master thread reads data file and broadcasts it to STs 
L.3    // Each slave thread is assigned a subset P′ of the total  
  number of pulses for each device. 
L.4       // Each device performs Inverse FFT and Shift on P′ 
L.5       // Each device performs image reconstruction given 
  the pulse subset P′ 
L.6          for each set P′ of pulses from the dataset P 
L.7              for each pixel assigned to thread in the Nx x Ny  
     construct image tile b|T 
L.8                     // Perform reconstruction on the tile 
L.9               end 
L.10        end 
L.11    // Each slave thread merges the reconstructed image  
  given the reconstructed tiles from each device 
L.12    // Master thread merges the reconstructed tiles from 
  each slave thread to yield reconstructed image b 
L.13    // Master Thread writes the reconstructed image to file 

L.1 For each set of pulses P′ from the dataset P 
L.2     // Read in a the next pulse set P′ serially, 
  using one thread 
L.3     // Perform Inverse FFT and Shift operations on  
  this set of pulses in parallel 
L.4    #pragma parallel for each pixel in the Nx x Ny  
  output image b 
L.5          // Perform image reconstruction 
L.6     end 
L.7 end 

      
 

L.1 // Read all pulse data into memory 
L.2 for each pulse in the Npulses dataset 
L.3     // Perform Inverse FFT (ifft) 
L.4     // Perform FFT Shift 
L.5     for each pixel in the Nx x Ny output image 
L.6          // Perform image reconstruction  
L.7     end 
L.8 end 
L.9 // Write image to file  
 



transfer, and IFFT/Shift) for double-precision GPU cluster 
version BP1mg (labeled “Multi”) of the single-stage 
backprojection algorithm (Npulses = 5,004).  Speedup is 
computed from the maximum runtime for all cases of BP1mg, 
with respect to the single-GPU version BP1sg.  Timing data 
for total run time are summarized graphically in Fig. 7. 

As shown in Table II, the kernel speedup for image sizes 
ranging from 4Kx4K to 8Kx8K effectively equals the 
expected theoretical value of 10x.  Slight differences in 
speedup (e.g., 10.019x instead of 10x) result from systematic 
errors due to limited temporal resolution of the tic…toc timer 
mechanism. 

TABLE II.  KERNEL RUNTIME IN SECONDS FOR SINGLE- AND MULTI-GPU 
VERSIONS OF THE BP1 BACKPROJECTION ALGORITHM. 

Runtime Version / Number of GPUs 
Nx x Ny BP1sg BP1mg/1 BP1mg/2 BP1mg/3 BP1mg/4 BP1mg/5 

2048x2048 11.39 1.133 1.132 1.132 1.231 1.232 
4096x4096 44.05 4.333 4.384 4.387 4.383 4.415 
8192x8192 173.79 17.051 17.247 17.254 17.255 17.246 
 
Runtime Version / Number of GPUs (cont’d) 
Nx x Ny BP1mg/6 BP1mg/7 BP1mg/8 BP1mg/9 BP1mg/10 Speedup 

2048x2048 1.198 1.200 1.201 1.199 1.152 9.243x 
4096x4096 4.384 4.386 4.387 4.399 4.415 9.978x 
8192x8192 17.346 17.334 17.334 17.335 17.346 10.019x 
 
 

 
Fig. 7.  Total Execution Time, BP1mg algorithm running in double 

precision floating point arithmetic on one to five Condor nodes with MPI. 

B. Reconstruction Error Measurement and Analysis 
In the following discussion, we refer to average error and 

maximum error, which are computed as follows.  Assume that 
a reference image a is an Nx x Ny pixel array, which is used as 
a basis for comparing the reconstructed image b, also an Nx x 
Ny pixel array, by computing a difference image d as: 

 d(i,j) = c(i,j) – a(i,j), 1 < i < Nx and 1 < j < Ny . (3) 

The maximum error and average error are defined from d, 
as follows:   

 emax = Vi,j d(i,j) / range         (4) 
and         
 eave = Σi,j d(i,j) / (range  Nx  Ny) , (5) 

where range denotes the range of pixel values in b. 

In tests using Equations 3-5, we found that the average and 
maximum output errors were identical to the output error for 
the double-precision single-GPU algorithm BP1sg outlined in 
Fig. 5. This is reasonable, since BP1mg is mathematically the 
same as BP1mg, but runs on multiple GPUs instead of a single 
GPU device. 

We have also found that measured error figures depend on 
the version of the Tesla C2050 architecture (e.g., SM10 or 
SM20), as well as the trigonometric functions employed.  In 
particular, sincosf and _sincosf refer to a combined 
trigonometric function that computes in single precision, while 
sincos refers to a combined trigonometric function that 
computes in double precision. 

For GPU version SM10 operating in single precision mode, 
the maximum error (relative to double precision version SM20 
using sincos) for the 4Kx4K output image was 4.42 / 255 (or 
2.8 percent), and 5.45 / 255 (or 3.45 percent) for the 8Kx8K 
image. However, for both images the average error was the 
same (0.0511 / 255 or 0.03 percent). We have found that the 
maximum error and average error were unaffected by the 
precision of the trigonometric functions. 

In the case of GPU version SM20 operating in single 
precision mode, the maximum and average errors were 
similarly unaffected by the precision of trigonometric 
functions.  For the 4Kx4K image, the max error was 2.32 / 255 
or 1.65 percent, while for the 8Kx8K image, the maximum 
error was 2.60 / 255 or 1.65 percent.  The average error was 
0.046 / 255 or 0.03 percent for both image sizes. While the 
maximum error was approximately half that obtained from 
SM10 single precision computation, the average error was 
reduced by only 10 percent. 

For GPU version SM10 operating in double precision 
mode, double datatypes are demoted to float datatypes. 
Although trigonometric precision does not affect the 
maximum and average errors, these are not the same as when 
SM10 single precision is used – but they are quite close.  
When GPU version SM20 is run in double precision mode, 
sincos had zero error, because all errors were measured with 
respect to this run. Sincosf and __sincosf produced maximum 
error of 0.00302 (effectively zero percent) for the 4Kx4K 
reconstructed image, and 0.00339 (effectively zero percent) 
for the 8Kx8K image. The average error was 0.0000585 and 
0.0000584 (as before, effectively zero percent).   

In the case of GPU version SM10 operating in hybrid 
precision mode, the maximum and average errors were the 
same as for SM10 operating in double precision mode.  For 
GPU Version SM20 operating in hybrid precision mode, the 
maximum and average errors were the same for sincosf, as 
well as for the case when these trigonometric functions run in 
SM20 double precision mode.  However, when sincos was 
used in SM20 hybrid mode, the maximum and average errors 
were approximately 10-4 and 10-7, respectively, compared to 
the “gold standard” SM20 double precision mode with sincos. 
As noted previously, SM10 in double precision mode 
produced the same errors as SM20 double precision mode.  



V. CONCLUSIONS 
Synthetic aperture radar image reconstruction via 

backprojection is an instance of a class of problems that are 
based structurally on the tensor product.  With some clever 
manipulation, backprojection algorithms can be adapted to a 
parallelization strategy based on tiling of the output data 
structure (in this case, a reconstructed SAR image).  However, 
one must also have a projection function that associates a 
computationally useful subset of the input data structure (in this 
case a SAR pulse array) with each output tile.   

In this paper, we present a tiling algorithm for SAR image 
reconstruction from thousands of pulses or views.  This 
algorithms, called BP1, is adapted for implementation on a 
single GPU (algorithm BP1sg) and a multi-GPU cluster 
(BP1mg) controlled by a multi-core CPU.  As theory predicts, 
execution time scales inversely with the number of GPU slave 
nodes, reaching a speedup of 10x for 10 Nvidia Tesla C2050 
GPUs on the Condor architecture. Average image 
reconstruction error is within +0.05 percent of grayscale range, 
and is negligible in a large portion of the reconstruction 
scenarios. 

We also present ideas for future work, in which the image 
reconstruction algorithm presented herein could be applied to 
problems in computed tomography, fluid dynamics, and other 
imaging or simulation scenarios based on multiple views. 
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